Abstract

Due to the unique properties of ceramics materials based on nitride, it could be used in the broadly understood technique. However, obtaining silicon nitride materials requires it to use the advanced methods of manufacturing, mostly because this material is difficult to sinter. Dense ceramic sinters were obtained from the system Si3N4-Al2O3-Y2O3 by applied pulsed current – SPS/FAST method (spark plasma sintering/field assisted sintering technique). The sintering parameters of the initial mixture were optimized to obtain the highest possible sinter properties, such as: density, Young’s modulus, hardness and fracture toughness. In the presented work the influence of pressure and pulse current, used in the SPS/FAST method, on sinterability and on selected physical and mechanical properties of the obtained materials was analyzed. The purpose of introducing the Al2O3 and Y2O3 additions to the Si3N4 matrix was to activate the hard-to-sinter silicon nitride powder and consequently to achieve a high density of the sintered samples. The best properties were characterized by sinter obtained in 1700°C and under pressure 63 MPa; the holding time at sintering temperature was 15 min. The density of the obtained sample has reached 98% theoretical value, and the other parameters were: Young’s modulus – 298 GPa, Vickers hardness – 17,7 GPa, fracture toughness – 6 MPa∙m1/2.

Highlights

  • Si3N4 silicon nitride is a ceramic material belonging to the so-called technical ceramics

  • Ceramics with a silicon nitride matrix are characterized by good chemical and oxidation resistance, high hardness and surface crack resistance

  • Nitride ceramics are widely used in many industries, including aviation, military, chemical, metallurgical, food, fuel, electronics industries, as well as in medicine – nitride ceramics are used to make, for example, machining tools, bearings, engine parts and gas turbines

Read more

Summary

PIOTR WYŻGA PIOTR KLIMCZYK JOLANTA CYBOROŃ PAWEŁ FIGIEL *

Due to the unique properties of ceramics materials based on nitride, it could be used in the broadly understood technique. Dense ceramic sinters were obtained from the system Si3N4-Al2O3-Y2O3 by applied pulsed current – SPS/FAST method (Spark Plasma Sintering/Field Assisted Sintering Technique). The sintering parameters of the initial mixture were optimized to obtain the highest possible sinter properties, such as: density, Young’s modulus, hardness and fracture toughness. In the presented work the influence of pressure and pulse current, used in the SPS/FAST method, on sinterability and on selected physical and mechanical properties of the obtained materials was analyzed. The purpose of introducing the Al2O3 and Y2O3 additions to the Si3N4 matrix was to activate the hard-to-sinter silicon nitride powder and to achieve a high density of the sintered samples. The density of the obtained sample has reached 98% theoretical value, and the other parameters were: Young’s modulus – 298 GPa, Vickers hardness – 17,7 GPa, fracture toughness – 6 MPa∙m1/2.

Introduction
Research material and methodology
Phase composition analysis
Microstructure of sinters
Selected physical and mechanical properties
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.