Abstract

AbstractBark beetles have impacted over 58 million acres of coniferous forest in the Western US since 2000. Most beetle impacted forests are in snow dominated, water limited headwater basins, which generate a disproportionate fraction of water supplies. Previous studies show mixed impacts of bark beetle outbreaks on streamflow with the potential to cause increased or decreased flows, but these studies either predate long‐term snowpack data, are model‐based, or examine only mountain pine beetle outbreaks. Ours is the first study to use an empirical, climate‐normalized paired catchment approach to quantify streamflow response to spruce beetle kill. Using 27 years of climate and streamflow observations from southwest Colorado, we show that in three of the six beetle impacted study basins, annual climate‐normalized streamflow increased by 22%–37% for at least three to 6 years after the beetle outbreak. Impacted basins exhibited no decreased flows and flows in unimpacted control basins remained unchanged. Among impacted basins, no single basin characteristic clearly explained variation of streamflow response. Higher runoff ratios during snowmelt contribute anywhere from 9% to 64% of streamflow increases, implying the importance of both snow and growing season processes in driving streamflow increases. These findings show variable, sometimes substantial streamflow increases in critical water supply basins following beetle kill in subalpine spruce forests, and contrast with evidence of unchanged or decreased streamflow following beetle kill in lower elevation pine forests in colder northern Colorado basins, highlighting the importance of climate and forest composition in refining hydrologic predictions following mountain forest disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.