Abstract

Beech forests reaches its native distribution limit in SE Norway, but is expected to expand substantially northwards due to climate warming. This may potentially result in a fundamental transformation of contemporary Northern European forests, with tentative effects on the associated belowground fungi. Fungal communities mediate vital ecosystem processes such as ecosystem productivity and carbon sequestration in boreal forests. To investigate how soil fungi is affected by the vegetation transition from spruce to beech forest, we sampled litter, humus and mineral soil in a forest landscape dominated by beech, spruce or a mixture of these. The fungal communities in the soil samples were analyzed by DNA metabarcoding of the rDNA ITS2 region. Although soil layers were the most important structuring gradient, we found clear differences in fungal species composition between spruce and beech plots. The differences in fungal community composition were most evident in the litter and least in the mineral soil. Decomposers, most notably Mycena, dominated the litter layer while various mycorrhizal fungi dominated the humus and mineral layers. Some ectomycorrhizal taxa, such as Cenoccocum and Russula, were more abundant in spruce forests. Differences in fungal community composition between forest types can potentially have large impacts on carbon sequestration rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.