Abstract

BackgroundSmall proline rich protein (SPRR) 2A is one of 14 SPRR genes that encodes for a skin cross-linking protein, which confers structural integrity to the cornified keratinocyte cell envelope. New evidence, however, shows that SPRR2A is also a critical stress and wound repair modulator: it enables a variety of barrier epithelia to transiently acquire mesenchymal characteristics (EMT) and simultaneously quench reactive oxygen species during wound repair responses. p53 is also widely recognized as the node in cellular stress responses that inhibits EMT and triggers cell-cycle arrest, apoptosis, and cellular senescence. Since some p53-directed processes would seem to impede wound repair of barrier epithelia, we hypothesized that SPRR2A up regulation might counteract these effects and enable/promote wound repair under stressful environmental conditions.ResultsUsing a well characterized cholangiocarcinoma cell line we show that levels of SPRR2A expression, similar to that seen during stressful biliary wound repair responses, disrupts acetylation and subsequent p53 transcriptional activity. p53 deacetylation is accomplished via two distinct, but possibly related, mechanisms: 1) a reduction of p300 acetylation, thereby interfering with p300-p53 binding and subsequent p300 acetylation of K382 in p53; and 2) an increase in histone deacetylase 1 (HDAC1) mRNA and protein expression. The p300 CH3 domain is essential for both the autoacetylation of p300 and transference of the acetyl group to p53 and HDAC1 is a component of several non-p300 complexes that enhance p53 deacetylation, ubiquitination, and proteosomal degradation. HDAC1 can also bind the p300-CH3 domain, regulating p300 acetylation and interfering with p300 mediated p53 acetylation. The importance of this pathway is illustrated by showing complete restoration of p53 acetylation and partial restoration of p300 acetylation by treating SPRR2A expressing cells with HDAC1 siRNA.ConclusionUp-regulation of SPRR2A, similar to that seen during barrier epithelia wound repair responses reduces p53 acetylation by interfering with p300-p53 interactions and by increasing HDAC1 expression. SPRR2A, therefore, functions as a suppressor of p53-dependent transcriptional activity, which otherwise might impede cellular processes needed for epithelial wound repair responses such as EMT.

Highlights

  • Small proline rich protein (SPRR) 2A is one of 14 SPRR genes that encodes for a skin cross-linking protein, which confers structural integrity to the cornified keratinocyte cell envelope

  • Small proline rich protein 2a (SPRR2A) blocks acetylation of K382-p53 We first determined whether SPRR2A protein expression in HuCCT-1 cells altered the distribution of Flagtagged p53 transfected protein, which it did not. p53 and SPRR2A proteins were detected in the nucleus and cytoplasm (Figure 1A), but SPRR2A did not change the distribution of p53

  • The intra-cellular distribution of SPRR2A was confirmed by expression of a Ds-Red-SPRR2A construct that showed both nuclear and cytoplasmic protein expression in HuCCT-1 cells (Figure 1C)

Read more

Summary

Introduction

Small proline rich protein (SPRR) 2A is one of 14 SPRR genes that encodes for a skin cross-linking protein, which confers structural integrity to the cornified keratinocyte cell envelope. Shows that SPRR2A is a critical stress and wound repair modulator: it enables a variety of barrier epithelia to transiently acquire mesenchymal characteristics (EMT) and simultaneously quench reactive oxygen species during wound repair responses. P53 is widely recognized as the node in cellular stress responses that inhibits EMT and triggers cell-cycle arrest, apoptosis, and cellular senescence. Since some p53-directed processes would seem to impede wound repair of barrier epithelia, we hypothesized that SPRR2A up regulation might counteract these effects and enable/promote wound repair under stressful environmental conditions

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.