Abstract

Since the discovery of the prototypical Sprouty (Spry) protein in Drosophila, there has been an effort to determine how these novel modulators of the Ras/MAP-kinase pathway function. A clue to their mechanism of action comes from the several highly conserved sequences within all the currently known Spry isoforms: an approximately 110-residue cysteine-rich sequence in the C-terminal half that directs Spry proteins to a concentration of signaling proteins at the plasma membrane; a small motif surrounding a tyrosine residue (Y55 in human Spry2) that is responsible for interaction with other proteins. In cultured mammalian cells, hSpry2 inhibits epidermal growth factor receptor (EGFR) endocytosis and subsequently sustains the activation of MAP kinase but negatively regulates the same pathway following stimulation of fibroblast growth factor receptors (FGFRs). Current evidence indicates that Cbl is a key protein that interacts directly with Spry2 following activation of receptor tyrosine kinases (RTKs). It appears to be the ability of Cbl to interact as an E3 ubiquitin ligase on specific target proteins and as a docking protein in other contexts that dictates the differential effects Spry2 has on the Ras/MAP-kinase pathway following EGFR and FGFR activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.