Abstract

Mercury and many of its compounds behave exceptionally in the environment due to their volatility, capability for methylation, and subsequent biomagnification in contrast with most of the other heavy metals. Long-range atmospheric transport of elemental mercury, its transformation to more toxic methylmercury compounds, the ability to undergo photochemical reactions and their bioaccumulation in the aquatic food chain have made it a subject of global research activities. Atmospheric Mercury Depletion Events (AMDEs) during polar springtime have been experimentally observed in the Arctic and in the Antarctic. During these events Hg 0 and ozone concentrations are significantly depleted and well correlated, whereas concentrations of reactive gaseous mercury species (RGM) simultaneously increase. The main reaction mechanism and corresponding chemical and physical properties of involved species in polar regions are summarized in this work. Hg 0 is removed from the atmosphere and deposited onto the underlying surface snow. This paper focused on the fast, photochemically driven, oxidation of boundary-layer Hg 0 , the influence of reactive halogen chemistry, and the resultant net input of mercury into the polar ecosystem during and after polar springtime. Several estimates of the size of the Arctic sink for newly deposited Hg range from 100 - 300 T/y, while estimates of the Antarctic sink are far more uncertain. The role of re-emission of elemental mercury from the snow surface is critically discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.