Abstract

15Nitrogen uptake, allocation, and leaching losses from soil were quantified during spring, for 4-year-old bearing `Redblush' grapefruit (Citrus × paradisi Macf.) trees on rootstocks that impart contrasting growth rates. Nine trees on either the fast-growing `Volkamer' lemon (VL) (C. volkameriana Ten & Pasq.) or nine on the slower-growing sour orange (SO) (C. aurantium L.) rootstocks were established in drainage lysimeters filled with Candler fine sand and fertilized with 30 split applications of N, totaling 76, 140, or 336 g·year-1 per tree. A single application of double-labeled ammonium nitrate (15NH 154NO3, 20% enriched) was applied at each rate to replicate trees, in late April. Leaves, fibrous roots, soil, and leachates were intensively sampled from each treatment over the next 29 days, to determine the fate of the 15NH 154NO3 application. Newly developing spring leaves and fruit formed dominant competitive sinks for 15N, accounting for between 40% and 70% of the total 15N taken up by the various treatments. Large fruit loads intercepted up to 20% of this 15N, at the expense of spring flush development, to the detriment of overall tree N status in low-N trees. Nitrogen supply at less than the currently recommended yearly rate of 380 g/tree exceeded the requirements of 4-year-old grapefruit trees on SO rootstock; however, larger trees on VL rootstock took up the majority of 15N from this rate over the 29-day period. Nitrogen-use efficiency declined with increasing N rate, irrespective of rootstock. The residual amounts of 15N remaining in the soil profile under SO trees after this time represented a significant N leaching potential from these sandy soils. Therefore, under these conditions, present N recommendations appear adequate for rootstocks that impart relatively fast growth rates to Citrus trees, but seem excessive for trees on slower-growing rootstock species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.