Abstract

Springback is inevitable for thin-walled rectangular 3A21 tube in rotary-draw bending process, and Young’s modulus is a crucial material property parameter affecting springback simulation. Therefore, to improve the springback prediction precision, the variation of Young’s modulus with plastic deformation for 3A21 material is studied through a repeated loading-unloading experiment, and a piecewise linear function is given out to describe the relationship between Young’s modulus and plastic strain, which is considered into a new material constitutive model combined with the Von-Mises yield function and the Swift isotropic hardening rule. Furthermore, a finite element springback prediction model is established by means of this new constitutive model for rotary-draw bending process of thin-walled rectangular 3A21 tube, and its reliability is validated experimentally. Comparisons between simulation results and experimental data show that, the accuracy of springback prediction can be improved significantly by 18.02% when the variation of Young’s modulus is considered. On the basis of the established model, the stress distribution field of thin-walled rectangular 3A21 tube in the whole rotary-draw bending process is obtained and analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call