Abstract

AbstractThe authors investigate the relationship between bias in simulated sea surface temperature (SST) in the equatorial eastern Pacific cold tongue during the boreal spring as simulated by an oceanic general circulation model (OGCM) and minimal wind mixing (MWM) at the surface. The cold bias of simulated SST is the greatest during the boreal spring, at approximately 3°C. A sensitivity experiment reducing MWM by one order of magnitude greatly alleviates cold biases, especially in March-April. The decrease in bias is primarily due to weakened vertical mixing, which preserves heat in the uppermost layer and results in warmer simulated SST. The reduction in vertical mixing also leads to a weak westward current in the upper layer, which further contributes to SST warming. These findings imply that there are large uncertainties about simple model parameters such as MWM at the oceanic surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.