Abstract
Extraordinarily high aerosol contamination was observed in the atmosphere over the city of Kyiv, Ukraine, during the March–April 2020 period. The source of contamination was the large grass and forest fires in the northern part of Ukraine and the Kyiv region. The level of PM2.5 load was investigated using newly established AirVisual sensor mini-networks in five areas of the city. The aerosol data from the Kyiv AERONET sun-photometer site were analyzed for that period. Aerosol optical depth, Ångström exponent, and the aerosol particles properties (particle size distribution, single-scattering albedo, and complex refractive index) were analyzed using AERONET sun-photometer observations. The smoke particles observed at Kyiv site during the fires in general correspond to aerosol with optical properties of biomass burning aerosol. The variability of the optical properties and chemical composition indicates that the aerosol particles in the smoke plumes over Kyiv city were produced by different burning materials and phases of vegetation fires at different times. The case of enormous PM2.5 aerosol contamination in the Kyiv city reveals the need to implement strong measures for forest fire control and prevention in the Kyiv region, especially in its northwest part, where radioactive contamination from the Chernobyl disaster is still significant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.