Abstract

Using echo planar diffusion-weighted magnetic resonance imaging, we measured three-dimensional changes in the apparent diffusion coefficient (ADC) of water in eight contiguous coronal slices, encompassing the entire rat brain, before and after local cortical stimulation. We applied chemical (potassium chloride application; n = 6) and mechanical (needle stab; n = 4) stimulations to the right posterior parietal rat cortex. In all animals in which potassium chloride or the needle stab was applied, a region of decreased ADC values to a mean of 0.45 +/- 0.03 x 10(-5)cm2/s occurred. These reduced ADC levels appeared in the posterior parietal cortex within 1 min after cortical stimulation and the change recovered within 1 min. Then a ripple-like movement of similar changes developed across the unilateral cortex. This change was localized to the cortex and no significant ADC changes occurred in subcortical structures. The propagating speed of this movement was 3.4 +/- 0.5 mm/min. These findings are compatible with spreading depression as observed electrophysiologically. Similar ADC changes occurred in areas distinct from the ischemic lesion in 3 of 12 animals subjected to focal cerebral ischemia. This magnetic resonance method could detect spreading ADC decline if it occurred in human diseases including brain ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.