Abstract
We investigate the large time behavior for two components reaction–diffusion systems of prey–predator type in a time varying environment. Here we assume that these variations in time exhibit an averaging property, which will be called mean value in this work. This framework includes in particular time periodicity, almost periodicity and unique ergodicity. We describe the spreading behavior of the prey and the predator, wherein the two populations are able to co-invade the empty space. Our analysis is based the parabolic strong maximum principle for scalar equation and on the derivation of local pointwise estimates that are used to compare the solutions of the prey–predator problem with those of a KPP scalar equation on suitable spatio-temporal domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.