Abstract
In this work we present a simple model for the kinetics of spreading of film-forming liquids on polymer gels. The model is compared with experiments and fair agreement is obtained. The spreading process can be theorized by considering the gel as a thick liquid layer containing a fibrous material (i.e., the polymer network). The spreading theory of Joos and Pintens is extended in such a way that the penetration of the flow into the bulk of the gel—which plays the major role in the kinetics of the spreading—is described by the Debye–Brinkman equation. It is also shown that spreading experiments can provide information on the surface structure of the underlying gel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.