Abstract

The purpose of this investigation was to determine the influence of the surface structure of dental implants on epithelial cell spreading and growth in vitro. Cell morphology on machined and sandblasted titanium surfaces was investigated. A total of 10 machined and 10 sandblasted discs and 10 glass coverslips were used for the present study. Samples were analyzed using scanning electron microscopy (SEM) and the cell spreading area was determined using a video image analysis system. After 24 hours incubation, keratinocytes grown on sandblasted titanium samples displayed numerous, long, and branched or dendritic filopodia closely adapted to the surface roughness. Filopodia varied from 3 to 12 microm in length and 0.1 to 0.3 microm in width. Cells cultured on a machined surface did not present such cytoplasmic extensions and displayed a round morphology. Keratinocytes seeded on glass coverslips were flat and edged by filopodia (maximum length 7 to 8 microm) on the spreading site of the cluster. Though cell morphology is comparable with that observed on sandblasted specimens, cytoplasmic extensions suggestive of strong adhesion and spreading attitude were less pronounced. These results indicate that sandblasted surfaces are the optimal substrata for epithelial cell adhesion and spreading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.