Abstract

A pendant drop spreading underneath a partially wetting surface from an initial shape to its final equilibrium configuration and contact angle is studied. A mathematical formulation that quantifies spreading behavior of liquid drops over textured surfaces is discussed. The drop volume and the equilibrium contact angle are treated as parameters in the study. The unbalanced force at the three-phase contact line is modeled as being proportional to the degree of departure from the equilibrium state. Model predictions are verified against the available experimental data in the literature. Results show that the flow dynamics is strongly influenced by the fluid properties, drop volume, and contact angle of the liquid with the partially wetting surface. The drop exhibits rich dynamical behavior including inertial oscillations and gravitational instability, given that gravity tries to detach the drop against wetting contributions. Flow characteristics of drop motion, namely, the radius of the footprint, slip length, and dynamic contact angle in the pendant configuration are presented. Given the interplay among the competing time-dependent forces, a spreading drop can momentarily be destabilized and not achieve a stable equilibrium shape. Instability is then controlled by the initial drop shape as well. The spreading model is used to delineate stable and unstable regimes in the parameter space. Predictions of the drop volume based on the Young-Laplace equation are seen to be conservative relative to the estimates of the dynamical model discussed in the present study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call