Abstract

We have used kinetic Monte Carlo (kMC) simulations of a lattice gas to study front fluctuations in the spreading of a nonvolatile liquid droplet onto a solid substrate. Our results are consistent with a diffusive growth law for the radius of the precursor layer, R∼t^{δ}, with δ≈1/2 in all the conditions considered for temperature and substrate wettability, in good agreement with previous studies. The fluctuations of the front exhibit kinetic roughening properties with exponent values which depend on temperature T, but become T independent for sufficiently high T. Moreover, strong evidence of intrinsic anomalous scaling has been found, characterized by different values of the roughness exponent at short and large length scales. Although such a behavior differs from the scaling properties of the one-dimensional Kardar-Parisi-Zhang (KPZ) universality class, the front covariance and the probability distribution function of front fluctuations found in our kMC simulations do display KPZ behavior, agreeing with simulations of a continuum height equationproposed in this context. However, this equationdoes not feature intrinsic anomalous scaling, at variance with the discrete model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call