Abstract

Surface tension gradient due to concentration difference and temperature difference induces liquid convection, known as Marangoni effect. The Marangoni effect has been extensively studied to understand its fundamental physics and its industrial applications. In this paper we study Marangoni effect of droplet in a three-phase liquid system. In this system, silicone oil is chosen as a driving liquid, and n-hexadecane is used as a driven liquid. A high-speed camera is used to capture the spreading process of n-hexadecane driven by silicon oil on the sodium dodecyl sulfate (SDS) solution. The experiment shows that n-hexadecane driven by silicone oil spreads from inside out, forming a ring structure. According to spreading dynamic behavior of internal boundary and external boundary of n-hexadecane ring, we study the spreading pattern of internal boundary and external boundary of n-hexadecane ring, and the influence of silicone oil volume on the spreading process. Analysis shows that the spreading law of internal silicone oil conforms to single droplet spreading at the liquid interface. In the initial spreading stage, the spreading of four-phase contact line (internal boundary) among silicone oil, air, n-hexadecane and water are dominated by gravity, The scale law of spreading distance <i>R</i> of four-phase contact line and <i>t</i> is in a range of <inline-formula><tex-math id="M5">\begin{document}$ R \sim {t}^{1/4} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20211682_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20211682_M5.png"/></alternatives></inline-formula>- <inline-formula><tex-math id="M6">\begin{document}$ R \sim {t}^{1/2} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20211682_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20211682_M6.png"/></alternatives></inline-formula>. Owing to the gravity influence, the larger the volume of silicone oil, the faster the four-phase contact line spreads. The volume of silicone oil has no effect on the scaling law of the whole spreading process. The next spreading stage, the spreading of the contact line is dominated by the interfacial tension gradient. The scale law of spreading distance <i>R</i> and <i>t</i> conforms to <inline-formula><tex-math id="M7">\begin{document}$ R \sim {t}^{3/4} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20211682_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20211682_M7.png"/></alternatives></inline-formula>. Under silicone oil driven, the liquid thickness of n-hexadecane at the four-phase contact line (internal boundary) among air, silicone oil, N-hexadecane and water increases, thus changing the contact angle at three-phase contact line (external boundary) among air, n-hexadecane and water. The change of contact angle leads the interfacial tension gradient to produce. The interfacial tension gradient drives external boundary to spread. Because the spreading of the three-phase contact line is dominated by interfacial tension gradient, the scale law of spreading distance <i>R</i> of three-phase contact line and time <i>t</i> conforms to <inline-formula><tex-math id="M8">\begin{document}$ \sim {t}^{3/4} $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20211682_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20211682_M8.png"/></alternatives></inline-formula>.

Highlights

  • In this system Silicone oil is chosen as a driving liquid

  • N-hexadecane is chosen as a driven liquid

  • the spreading process of N-hexadecane driven by Silicon oil on the sodium dodecyl sulfate

Read more

Summary

Introduction

Marangoni 效应是一种液体在界面张力梯度作用下的自发流动行为。液 体界面上液体的 Marangoni 效应在工程技术领域具有重要作用。本文使 用硅油作为驱动液体,正十六烷作为被驱动液体,十二烷基硫酸钠溶液 作为液体基底,通过高速相机捕捉正十六烷受驱动铺展的整个过程,研 究了三相液体系统中液滴的 Marangoni 效应。实验发现,正十六烷在硅 油的驱动下从内向外铺展,形成液体圆环。本文根据正十六烷圆环内、 外边界铺展行为,分析了正十六烷内边界和外边界的铺展原理,并研究 了滴入硅油体积对于铺展过程的影响。研究发现,正十六烷内边界铺展 与单一液滴的铺展规律相同,正十六烷内边界前期铺展由重力主导,内 边界铺展标度律在R~t1/4 到R~t1/2范围。随后铺展由界面张力梯度主 导,内边界铺展标度律为R~t3/4。因内边界铺展受重力影响,内边界的 铺展速度与硅油体积成正相关。而正十六烷外边界在硅油驱动下,接触 角改变产生界面张力梯度,在界面张力梯度作用下外边界铺展标度律为 R~t3/4。. 人们对于液体铺展的研究已有很久的历史,早在 1941 年 W.D.Harkins[10]给 出铺展系数 S 的概念: S = γ12 − (γ13 + γ23) 其中γij 是 i 相流体和 j 相流体的界面张力,为了方便描述将 1 相,2 相,3 相 分别定义为空气,水,油。当 S>0 时,油滴会在界面张力梯度作用下向外铺展, 最终完全覆盖基底,并在基底上形成一层均匀的薄油膜。这种液滴在界面张力 作用下向外铺展的现象也叫 marangoni 效应。在 1969 年 J.A.Fay[11]研究了石油 在水面上的铺展问题,利用量纲分析的方法,第一次建立了液滴铺展半径与时 间的幂指数关系,揭露了液滴在水面上铺展的力学机制。这种建立半径与时间 幂指数关系研究液体铺展的方法也叫标度分析法。在此基础之上 Hub.C[12]、 Foda.M[13]等人进一步研究了液滴在厚液体基底上的铺展,用更严谨数学推导验 证 J.A.Fay 的结论。之后 Borgas.S[14]推导了液滴在薄液体基底上的铺展。上述工 作为研究液滴在液体界面上的铺展奠定了坚实的理论基础。 近些年来,有关液滴铺展的研究层出不穷,其研究逐渐向液体系统组成成 分多样化,诱导液滴铺展方式多样化,铺展过程中实验现象多样化方向发展。 但根据诱导方式可分为两大类:热 Marangoni 效应[15, 16]和溶质 Marangoni[17-23] 效应。前者是温度梯度驱动液滴铺展,通过在液滴中的温度梯度产生界面张力 Wodle[3]将含有表面活性剂的二氯甲烷液滴置入 含同浓度表面活性剂的水溶液中,二氯甲烷液滴向外铺展,同时其边缘周期性 地向外放射出液环。该现象是接触线处二氯甲烷的快速挥发增加液滴边缘表面 活性剂浓度,同时降低液滴边缘温度,诱导了热 Marangoni 效应和溶质 Marangoni 效应,两种效应耦合驱动液滴产生独特的铺展行为。K.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call