Abstract

Time evolution of the microscopic wetting velocity of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) or water on a micrometer-scale line-patterned surface with a poly(3-sulfopropyl methacrylate) brush and a hydrophobic perfluoroalkyl monolayer was precisely measured by direct observation using optical microscopy and a selective dyeing method over a long period (178 days). When a liquid droplet was placed on the dyed line-patterned brush surface, the liquid penetrated and spread into the polymer brush layer, forming a precursor thin film that extended beyond the macroscopic contact line. The elongation proceeded in two stages by an adiabatic process followed by a diffusive process. The elongation distance X increased with time in proportion to t2.6 for water and t0.81 for EMI-TFSI during the adiabatic process. In a diffusive process, the advancing velocity of the precursor film was markedly reduced to be expressed as X ∝ t0.66 for water and X ∝ t0.21 for EMI-TFSI, indicating that the diffusive process was affected by the energy dissipation of the wetting system. The high viscosity and the strong molecular interaction of EMI-TFSI with the polymer brush gave a large entropy change during the wetting process to result in a slower spreading velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.