Abstract

We study the disease-spreading dynamics of the West Nile virus (WNv) epidemic model under shifting climatic conditions. A WNv epidemic model is developed incorporating a shifting net growth term to depict the evolving mosquito habitat. First, we comprehensively characterize the spreading dynamics of mosquitoes for any given climate change speed compared with the intrinsic spreading speed of mosquitoes. Utilizing the results from mosquito dynamics, we determine the spreading dynamics of infected birds and mosquitoes, taking into account relationships among the shifting speed and the spreading speeds of mosquito and WNv. Ultimately, we find that infected mosquitoes and birds propagate, and their population densities converge to a stable positive endemic state. This paper provides crucial insights into the impact of climate change on the spread of vector-borne diseases such as WNv.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call