Abstract

The effects of Bi addition on the properties of Sn-3.0Ag-0.5Cu molten alloy on Cu substrates are discussed using wettability and interface microstructure analysis. The changes of the contact angles between Sn-3.0Ag-0.5Cu-xBi and Cu substrates with the spreading time are described by Dezellus model. It indicates that the spreading process is governed by the interfacial reaction during the dwelling time. The interface microstructure is observed to clarify the effects of reactions on the spreading behavior. It is found that Cu6Sn5 is formed adjacent to the solder and Cu3Sn appears over the substrate with Bi added at 613K, indicating that Bi exists between the intermetallics and the addition of Bi can hinder the diffusion of copper towards the interior of the solder. Therefore the existence of Bi decreases the agglomeration of Cu-Sn grains. The growth of intermetallics is thus limited and the shape of intermetallics transforms from scallop to zigzag consequently. However, the segregation phenomenon appears when the additive amount of Bi is more than 5.5mass %, which could lead to the occurrence of fracture and degrade the performance of Sn-3.0Ag-0.5Cu-xBi alloy. The results of the present study provide basic physical and chemical data for the application of lead-free solder in the future microgravity space environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.