Abstract

Spreading depression (SD) is a profound but transient depolarization of neurons and glia that migrates across the cortical and subcortical gray at 2-5 mm/min. Under normoxic conditions, SD occurs during migraine aura where it precedes migraine pain but does not damage tissue. During stroke and head trauma, however, SD can arise repeatedly near the site of injury and may promote neuronal damage. We developed a superfused brain slice preparation that can repeatedly support robust SD during imaging and electrophysiological recording to test drugs that may block SD. Submerged rat neocortical slices were briefly exposed to artificial cerebrospinal fluid (ACSF) with KCl elevated to 26 mM. SD was evoked within 2 min, recorded in layers II/III both as a negative DC shift and as a propagating front of elevated light transmittance (LT) representing transient cell swelling in all cortical layers. An SD episode was initiated focally and could be repeatedly evoked and imaged with no damage to slices. As reported in vivo, pretreatment with one of several N-methyl-D-aspartate (NMDA) receptor antagonists blocked SD, but a non-NMDA glutamate receptor antagonist (CNQX) had no effect. NMDA receptor (NMDAR) activation does not initiate SD nor are NMDAR antagonists tolerated therapeutically so we searched for more efficacious drugs to block SD generation. Pretreatment with the sigma-one receptor (sigma(1)R) agonists dextromethorphan (10-100 microM), carbetapentane (100 microM), or 4-IBP (30 microM) blocked SD, even when KCl exposure was extended beyond 5 min. The block was independent of NMDA receptor antagonism. Two sigma(1)R antagonists [(+)-3PPP and BD-1063] removed this block but had no effect upon SD alone. Remarkably, the sigma(1)R agonists also substantially reduced general cell swelling evoked by bath application of 26 mM KCl. More potent sigma(1)R ligands that are therapeutically tolerated could prove useful in reducing SD associated with migraine and be of potential use in stroke or head trauma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.