Abstract
Focal brain ischemia is best studied in neocortex and striatum. Both show highly vulnerable neurons and high susceptibility to spreading depolarization (SD). Therefore, it has been hypothesized that these two variables generally correlate. However, this hypothesis is contradicted by findings in cerebellar cortex, which contains highly vulnerable neurons to ischemia, the Purkinje cells, but is said to be less susceptible to SD. Here, we found in the rat cerebellar cortex that elevated K+ induced a long-lasting depolarizing event superimposed with SDs. Cerebellar SDs resembled those in neocortex, but negative direct current (DC) shifts and regional blood flow responses were usually smaller. The K+ threshold for SD was higher in cerebellum than in previous studies in neocortex. We then topically applied endothelin-1 (ET-1) to the cerebellum, which is assumed to cause SD via vasoconstriction-induced focal ischemia. Although the blood flow decrease was similar to that in previous studies in neocortex, the ET-1 threshold for SD was higher. Quantitative cell counting found that the proportion of necrotic Purkinje cells was significantly higher in ET-1-treated rats than sham controls even if ET-1 had not caused SDs. Our results suggest that ischemic death of Purkinje cells does not require the occurrence of SD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.