Abstract

The aim of this paper is to develop discrete stochastic approximation algorithms that adaptively optimize the spreading codes of users in a code-division multiple-access (CDMA) system employing linear minimum mean-square error (MMSE) receivers. The proposed algorithms are able to adapt to slowly time-varying channel conditions. One of the most important properties of the algorithms is their self-learning capability-they spend most of the computational effort at the global optimizer of the objective function. Tracking analysis of the adaptive algorithms is presented together with mean-square convergence. An adaptive-step-size algorithm is also presented for optimally adjusting the step size based on the observations. Numerical examples, illustrating the performance of the algorithms in multipath fading channels, show substantial improvement over heuristic algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.