Abstract

In this paper, we investigate the effect of lube textures from the viewpoint of lubricant spreading. Lube textures, designating a patterned distribution of bonding strength between lubricant molecules and disk surface, were formed by irradiating ultraviolet rays through a stripe-patterned mask onto a magnetic disk surface which was partially coated with one-monolayer film of perfluoropolyether. Surface characteristics of the lube textures were evaluated by surface energies ascertained from contact angle measurements. Spreading of the lubricant film was measured by scanning microellipsometry on the striped lube textures in the directions parallel and perpendicular to the stripes. The thickness-dependent diffusion coefficients extracted from the spreading profiles show that lubricant spreading in the regime of film thickness less than 0.2 nm is faster along the stripes, indicating the possibility of controlling the behavior of lubricant films with lube textures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call