Abstract
When oil droplets impact a solid surface for oil-air lubrication, they may spread out to produce a thin oil layer on the surface, which serves as a significant source of lubrication. A test rig was constructed in this research to observe the spreading behavior of oil droplets impacting surfaces from both frontal and lateral views. From the frontal view, laser-induced fluorescence techniques are used to measure the thickness of the oil layer quantitatively during the spreading of oil droplets. While the lateral view can observe the shape evolution of the droplets. Oil droplet spreading patterns on the sheet with dry surfaces and with different thin liquid film thicknesses were studied, and the effect of viscosity and the thickness of the thin liquid film on spreading radius and spreading thickness is considered. The experimental findings demonstrate that the maximum spreading factor, the spreading central layer thickness, and the apparentness of retraction all increase as viscosity increases. The retraction is obviously impacted by thin liquid films, and the retraction weakens as the thin liquid film thickness increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.