Abstract

Impact dynamics of nanodroplets has recently gained extensive attention because of its potential applications in nanoscale inkjet printing, nanodroplet spray cooling, and nanocoating. In this study, a nanodroplet impacting unheated, flat, smooth, and hydrophobic surfaces is investigated via molecular dynamics simulations. The emphasis is placed on spreading and retraction kinetics, i.e., time-dependent wetting radius or r–τ relation, where r and τ are the normalized wetting radius and time. On the basis of an energy conservation approach, an analytical model of r–τ kinetics is developed for impacting nanodroplets. Hypotheses of cylinder droplet and extensional flow are employed to calculate the transient kinetic energy and viscous dissipation rate, which are found to be the most appropriate for impacting nanodroplets. The model is tested in a range of Weber numbers from We = 15 to 60, Reynolds numbers from Re = 11.07 to 22.19, and surface wettability θ0 = 105° and 125°. The tests show that the mean relative deviation ranges from 2.22% to 5.47%, and hence, the developed model captures the spreading and retraction kinetics of a nanodroplet impacting hydrophobic surfaces with satisfactory accuracy. Furthermore, it is found that the model can also be extended to predict the retraction kinetics of nanodroplets on hydrophilic surfaces for high Weber numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.