Abstract

Tuberculosis (TB) and coronavirus disease 2019 (COVID-19), caused by Mycobacterium tuberculosis (MTB) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), respectively, are serious public health issues. N95 respirators are commonly used to protect people from infections in high-risk environments. Consequently, we used Mycobacterium smegmatis and bacteriophage MS2 as MTB and SARS-CoV-2 surrogates to evaluate the ability of a quaternary ammonium agent (QAA) coating on the surface of new N95 respirators to reduce the microbial burden upon aerosol exposure. Regarding the burden (105 CFU (or PFU)/m3) of M. smegmatis and MS2 phage that settled onto the respirator surface, the QAA yielded average reduction efficiencies ( R % ) of 92.4% and 99.8%, respectively. In addition, the antimicrobial activity of the coated respirator was maintained for one week. For bioaerosols that contacted the respirator (105 CFU (or PFU)/m3), the R % of the QAA was 90.7% for M. smegmatis and 94.4% for MS2 phage on the outermost layer of the respirator. Moreover, filtration efficiencies between a QAA-coated respirator and an untreated respirator were not significantly altered ( p = 0.332 ). These results demonstrate that this QAA product has a durable antimicrobial activity and could reduce the MTB and SARS-CoV-2 concentrations on the N95 respirator surface. However, it is recommended that such a coating respirator not be worn for more than 4 hours based on hemolysis assay results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call