Abstract

We analyze the basic principles of the spread-space holographic code division multiple access (CDMA) technique. We describe the structure of the encoder and decoder and present a basic mathematical analysis based on spatial harmonic decomposition for the receiver's processing module, which is comprised of a Fourier transform lens and a holographic matched filter. Subsequently, we study two applications of optical holographic CDMA, namely, free-space holographic CDMA photonic switch and free-space (wireless) multiaccess optical (infrared) indoor communications. For both techniques, we describe the two-dimensional imaging techniques, namely user's code transmission, and highlight the basic parameters and components that need to be optimized. To obtain the bit-error rate (BER) of the proposed application, we first evaluate the probability density function of multiuser interference and then evaluate the BER as a function of the processing gain, number of users, the received power, and the optimum threshold. For BER /spl ap/ 10/sup -9/, the result shows an extraordinary number of users that can be supported via holographic CDMA, for both applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.