Abstract

Traffic accidents sometimes lead to the spread of hazardous compounds to the environment. Accidental spills of hazardous compounds on roads in the vicinity of vulnerable objects such as water supplies pose a serious threat to water quality and have to be assessed. This study compared three different assessment methods, electrical resistivity measurements, analytical flow calculations, and 1D and 2D dynamic flow modeling, to describe rapid transport processes in the road shoulder and roadside verge after a major spill. The infiltration and flow paths of water-borne substances were described during simulated discharge of pollutants on different road types. Full-scale tracer tests using sodium chloride were carried out at nine different road locations in Sweden. Analysis of grain size distribution and infiltrometer tests were carried out at the road shoulder and verges. The pathways and travel times were traced using resistivity measurements and 3D inverse modeling. The resistivity measurements were compared to analytical flow calculations and 1D and 2D dynamic modeling. All measurement sites were highly heterogeneous, which caused preferential flow. Vertical flow velocities of 1.4–8.6 × 10−4 m/s were measured. The results of the analytical calculations and flow modeling were of the same order of magnitude. The measurements showed that almost all infiltration goes directly into the road embankment, hence the composition and structure of the built-up road must be considered. The non-destructive resistivity measurements and 3D modeling provided useful information for clarifying the infiltration and flow pattern of water-borne compounds from road runoff.

Highlights

  • Transport of hazardous liquids on roads sometimes results in accidents and discharge of pollutants

  • Results from the measurements of infiltration and texture analyses of soils are shown in Table 4 and Fig. 6

  • Tracer tests along roads in Sweden identified two major road types: modern roads built up of macadam with a highly permeable road shoulder and very short transport times, and older roads mainly consisting of natural and compacted soils, in this case gravelly-sandy till with much slower infiltration and percolation

Read more

Summary

Introduction

Transport of hazardous liquids on roads sometimes results in accidents and discharge of pollutants. The probability of traffic accidents causing water pollution can be estimated by Bayesian Network analysis (Yang et al 2015; Tang et al 2016). Liquid spills sometimes leave the paved road and infiltrate into the surroundings. Spread of pollutants from roads to surrounding surfaces and groundwater bodies has been studied frequently during recent decades (e.g., Thunqvist 2000, 2003; Lindström 2005; Moghadas et al 2015; Aljazzar and Kocher 2016; Knez and Slabe 2016). Implementation of the EU Water Framework Directive (EG 2000/60) has increased awareness of the pollution risks

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call