Abstract

To determine how simultaneous dual-electrode stimulation (DES) can be optimized for the individual patient to deliver better sound quality and speech recognition. DES was compared with single-electrode stimulation (SES) with respect to the site of stimulation (X) in the cochlea, the spread of excitation (SOE), and channel interaction. Second, it was investigated whether the number of intermediate pitches created with DES can be predicted from SOE, channel interaction measures, current distribution in the cochlea, or distance of the electrode to the medial wall. Twelve users of the HiRes90K cochlear implant with HiFocus1J electrode were randomly selected to participate in this study. Electrode contacts were selected based on their location in the cochlea as determined by multislice computed tomography, viz. 120 degrees (basal), 240 degrees (middle), and 360 degrees (apical) from the round window. The number of intermediate pitches with simultaneous DES was assessed with a three-alternative forced choice pitch discrimination experiment. The channel interactions between two single-electrode contacts and two DES pairs were determined with a threshold detection experiment (three-alternative forced choice). The eCAP-based SOE method with fixed probe and variable masker was used to determine the location of the neurons responding to a single-electrode contact or dual-electrode contact stimulus. Furthermore, the intracochlear electrical fields were determined with the Electrical Field Imaging tool kit. DES was not different from SES in terms of channel interaction and SOE. The X of DES was 0.54 electrode contacts more basal compared with SES stimulation, which was not different from the predicted shift of 0.5. SOE and current distribution were significantly different for the three locations in the cochlea but showed no correlation with the number of perceivable pitches. A correlation was found between channel interaction and the number of intermediate pitches along the array within a patient, not between patients. SES and DES are equivalent with regard to SOE and channel interaction. The excitation site of DES has the predicted displacement compared with the excitation region induced by the neighboring single-electrode contact. Unfortunately, no predictor for the number of intermediate pitches was found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call