Abstract

For a two patches SIR model, it is shown that its dynamic behavior is determined by several quantities. We have shown that if R0<1, then the disease-free equilibrium is globally asymptotically stable, otherwise it is unstable. Some sufficient conditions for the local stability of boundary equilibria are obtained. Numerical simulations indicate that travel between patches can reduces oscillations in both patches; may enhances oscillations in both patches; or travel switches oscillations from one patch to another.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.