Abstract

The flow of an impinging non-Newtonian jet onto a solid flat plate is examined theoretically in this study. Similarity solutions are sought for both shear-thinning and shear-thickening fluids of the power-law type. The jet is assumed to spread out in a thin layer bounded by a hydraulic jump. In addition to the stagnation-flow region, the flow domain is divided into three main regions: a developing boundary layer, fully viscous boundary layer and hydraulic jump. The anomalous behaviour of power-law fluids at small shear rate is remedied by seeking a two-layer solution in each domain. Such anomalies include the singularity of viscosity for shear-thinning fluids, and the vanishing of viscosity as well the overshoot in velocity for shear-thickening fluids. Although the rate of shear-thinning appears to affect significantly the film profile and velocity, only the overall viscosity influences the position of the hydraulic jump.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.