Abstract

The spread of antimicrobial resistance (AMR) through multiple reservoirs is a global concern. Wastewater is a critical AMR dissemination source, so this study aimed to assess the persistence of resistance genetic markers in wastewater using a culture-independent approach. Raw and treated wastewater samples (n = 121) from a wastewater treatment plant (WWTP), a human hospital, a veterinary hospital, and a pig farm were monthly collected and concentrated by filtration. DNA was extracted directly from filter membranes, and PCR was used in the qualitative search of 32 antimicrobial resistance genes (ARGs). Selected genes (blaCTX-M, blaKPC, qnrB, and mcr-1) were enumerated by quantitative real-time PCR (qPCR). Twenty-six ARGs were detected in the qualitative ARGs search, while quantitative data showed a low variation of the ARG's relative abundance (RA) throughout the months, especially at the human hospital and the WWTP. At the WWTP, despite significantly reducing the absolute number of gene copies/L after each treatment stage (p < 0.05), slight increases (p > 0.05) in the RAs of genes blaCTX-M, qnrB, and mcr-1 were observed in reused water (tertiary treatment) when compared with secondary effluent. Although the increase is not statistically significant, it is worth noting that there was some level of ARGs concentration after the disinfection process. No significant absolute or relative after-treatment quantification reductions were observed for any ARGs at the veterinary hospital or the pig farm. The spread of ARGs through sewage needs to be continuously addressed, because their release into natural environments may pose potential risks of exposure to resistant bacteria and impact local ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call