Abstract

BackgroundSurface plasmon resonance is a label-free biophysical technique that is widely used in investigating biomolecular interactions, including protein-protein, protein-DNA, and protein-small molecule binding. Surface plasmon resonance is a very powerful tool in different stages of small molecule drug development and antibody characterization. Both academic institutions and pharmaceutical industry extensively utilize this method for screening and validation studies involving direct molecular interactions. In most applications of the surface plasmon resonance technology, one of the studied molecules is immobilized on a microchip, while the second molecule is delivered through a microfluidic system over the immobilized molecules. Changes in total mass on the chip surface is recorded in real time as an indicator of the molecular interactions.Main bodyQuality and accuracy of the surface plasmon resonance data depend on experimental variables, including buffer composition, type of sensor chip, coupling chemistry of molecules on the sensor surface, and surface regeneration conditions. These technical details are generally included in materials and methods sections of published manuscripts and are not easily accessible using the common internet browser search engines or PubMed. Herein, we introduce a surface plasmon resonance database, www.sprdatabase.info that contains technical details extracted from 5140 publications with surface plasmon resonance data. We also provide an analysis of experimental conditions preferred by different laboratories. These experimental variables can be searched within the database and help future users of this technology to design better experiments.ConclusionAmine coupling and CM5 chips were the most common methods used for immobilizing proteins in surface plasmon resonance experiments. However, number of different chips, capture methods and buffer conditions were used by multiple investigators. We predict that the database will significantly help the scientific community using this technology and hope that users will provide feedback to improve and expand the database indefinitely. Publicly available information in the database can save a great amount of time and resources by assisting initial optimization and troubleshooting of surface plasmon resonance experiments.

Highlights

  • Surface plasmon resonance is a label-free biophysical technique that is widely used in investigating biomolecular interactions, including protein-protein, protein-DNA, and protein-small molecule binding

  • We focused to gather information from publications with conventional Surface plasmon resonance (SPR) systems using sensorchips made of continuous thin metal layer, the information included in our database is useful for researchers using other instruments based on derivative techniques such as localized surface plasmon resonance (LSPR) and fiber optic particle plasmon resonance (FOPPR) to investigate biomolecular interactions

  • We decided to generate the SPR database (SPRD) to assist future users of SPR technology to take full advantage of the collective knowledge in SPR literature. When it was clearly stated in the original publication, we recorded the following details related to SPR experiments in the SPRD: Reference We present the title of the publication, PubMed unique identifier number (PMID) and the hyperlink to PubMed for each data entry

Read more

Summary

Conclusion

Amine coupling and CM5 chips were the most common methods used for immobilizing proteins in surface plasmon resonance experiments. Number of different chips, capture methods and buffer conditions were used by multiple investigators. We predict that the database will significantly help the scientific community using this technology and hope that users will provide feedback to improve and expand the database indefinitely. Available information in the database can save a great amount of time and resources by assisting initial optimization and troubleshooting of surface plasmon resonance experiments

Background
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.