Abstract
Coaxial jet electrospray is a technique to generate microencapsules, which uses electric forces to create a coaxial microjet from two immiscible liquids. Compound droplets with narrow size distribution are produced after the jet breaks up. In this paper, the spraying modes are investigated experimentally with proper flow rates of the inner and outer liquids. Ethanol/glycerol/tween mixture (outer liquid) and cooking oil (inner liquid) are fed into the gap between outer and inner capillaries and the inner capillary, respectively. The spraying modes presented in our experiments are “dripping mode,” “dripping mode in spindle,” “cone-jet mode,” “pulse mode in cone,” and “multijets mode” sequentially, as the applied voltage increases. The region of stable cone-jet mode extends with decrease of the outer liquid flow rate and increase of the inner one. It is found that the spray phenomena are mainly determined by properties of the outer liquid, which is viscous and electric conductive enough. A rudimentary physical model is developed, in which both the viscosity and liquid interface tension are taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.