Abstract

Wound healing is a critical process that facilitates the body's recovery from injuries and helps prevent infections, thereby maintaining overall tissue and organ functionality. However, delayed wound healing owing to various factors can lead to bacterial infections and secondary complications. In this study, a ciprofloxacin (CIP)-loaded MXene/sodium alginate (SA) hydrogel was fabricated to inhibit bacterial infections and enhance wound healing. The hydrogel was formulated in a sprayable state by blending CIP-loaded MXene (CIP-MX) with SA. This hydrogel was found to exhibit excellent photothermal conversion capability and biocompatibility under near-infrared (NIR) irradiation. In addition, the hydrogel enabled controlled drug release based on NIR irradiation, ultimately enabling improved antibacterial activity. Based on the in vitro and in vivo experiments, the CIP-loaded MXene/SA hydrogel (CIP-MX@Gel) accelerated wound healing. Overall, the CIP-MX@Gel has excellent potential as an effective wound healing material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call