Abstract

AbstractPost‐surgery microbial infections are still one of the main reasons for implant failure, which results in very high physical and psychological pain for the patient and an increased cost for the healthcare system. A polymer nanocomposite antibacterial coating on titanium implants represents a valuable alternative to the more expensive and energy‐consuming technological solutions nowadays used. In this regard, a sprayable thermoset nanocomposite composed of silanized‐terminals polyethylene glycol (PEG)/ZnO nanoparticle is herein proposed. Initially, PEG's terminals' solvent‐free silanization and curing are studied by Fourier Transform Infrared and µRaman spectroscopies. Scanning Electron Microscope investigations and scratch tests have shown that the spraying procedure optimization and the oxidation treatment of the titanium substrate lead to a homogeneous coverage and improved adhesion of the coatings. The antibacterial activity is tested against not only both S. aureus and P. aeruginosa bacterial American Type Culture Collection strains, but also using very aggressive antibiotic‐resistant clinical strains. Interestingly, antibacterial activity, evaluated by time‐killing tests, is observed for all tested bacterial strains. Live/dead tests further confirm that 5 wt% of ZnO allows obtaining a bacteriostatic activity within 24 h, whereas a complete growth inhibition (bactericidal activity) of both tested strains is observed for coatings with 20 wt% of ZnO nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call