Abstract

The abscission compound CMNP (5-chloro-3-methyl-4-nitro-1H-pyrazole) was applied to fully mature sweet orange trees at different spray volumes using a vertical, multiple-fan air-blast sprayer to determine distribution of fruit loosening throughout the canopy and subsequent effects on mechanical harvester efficiency. CMNP was applied at 0, 935, 1871, and 2806 L·ha−1 in three ‘Valencia’ and one ‘Hamlin’ grove. Spray coverage was measured using water-sensitive paper and fruit loosening was measured by fruit detachment force (FDF). Spray coverage and FDF were measured at 1-, 2-, and 4-m height within the canopy and inside the canopy near the trunk and on the periphery of the canopy. Spray coverage increased with volume of CMNP applied. Spray coverage was higher at 4 m than 1 and 2 m, which were similar. Spray coverage within the canopy was decreased almost half compared with that of the periphery. FDF was unaffected by spray volume at the different heights except in one trial where fruit had higher FDF at 4 m. Fruit inside the canopy did not loosen as much as fruit outside the canopy in three of the four trials. FDF inside the canopy averaged 52 to 84 N, whereas fruit on the periphery of the canopy averaged 50 to 74 N. CMNP promoted fruit drop, but only in two trials was the amount over 5% of the total yield for the 2806-L·ha−1 treatment. The fruit were harvested by canopy shakers that captured fruit on catch frames, except one of the ‘Valencia’ trials in which the canopy shaker did not have a catch frame. The percent of the total crop removed by the harvesters increased when CMNP was applied at higher spray volumes except in the ‘Hamlin’ trial in which there was no difference among volume treatments. The percent of the total crop removed by the harvester but not captured by the catch frame increased at higher volumes of CMNP applied for two of the three trials in which catch frames were used. Fruit loss with greater volume of CMNP applied was promoted by peripheral canopy contact with the front shield of the harvester that knocked fruit down before the catch frame moved under that portion of the canopy. Recovery percentage, or the percentage of total yield that was caught and conveyed to bulk collection by the harvester catch frame, averaged 78.1% to 87.8% of total yield. Higher CMNP volume with increased removal rate compensated for higher catch frame loss, providing overall higher recovery percentage. Based on the goals of minimizing fruit drop and maximizing fruit recovery, the range of FDF that should be reached by harvest is 40 N to 65 N for canopy shakers equipped with catch frames. These trials underscore the importance of adequate CMNP coverage for reducing in-canopy variation of fruit loosening and maximizing fruit removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call