Abstract

AbstractAmidst the global endeavor toward sustainable energy sources, photocatalysis appears as a promising gateway toward the production of solar fuels, in particular hydrogen. Hydrogen is currently a crucial reagent for vital industries such as petrol desulfurization, iron reduction and ammonia production, so the decarbonization of its production is a major challenge. CuMnO2 (CMO), a p‐type semiconductor, has been shown to enhance the efficiency of catalysts such as TiO2 for the photoelectrocatalytic water splitting reaction. However, since pure CMO thin films have never been reported, its potential and limitations remain elusive. We used spray pyrolysis as a low‐cost synthesis technique to simplify and accelerate the synthesis of CMO thin films directly on FTO substrates. CMO prepared in this manner exhibits activity toward photoeletrocatalytic water splitting and O2 reduction. The activity has been found to be highly dependent on synthesis conditions, especially on the ratio and volume of precursors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.