Abstract

Objective: Sustained release systems have the potential to enhance the therapeutic responses in the long-term management of psychiatric disorders. In the present study, cross-linked microspheres of the antipsychotic drug Trifluoperazine (TFP) were prepared using biodegradable polymer-chitosan and various in vitro evaluations were performed on the prepared microspheres. Methods: The spray drying technique was used to prepare TFP-loaded chitosan microspheres. Tripolyphosphate (TPP) was incorporated into the chitosan solutions as a cross-linking agent in varying concentrations. Different evaluations like production yield, encapsulation efficiency, drug-polymer compatibility, Scanning Electron Microscopy (SEM), X-ray diffraction studies (XRD), Differential Scanning Colorimetry (DSC), particle size, zeta potential analysis and in vitro drug release studies were performed on the developed formulations. Results: The formulated microparticles exhibited production yields ranging from 38.51 to 57.21% and had reasonably good encapsulation efficiencies (54.52-78.35%). The drug excipient compatibility was confirmed by Infrared Spectroscopy. All the microspheres showed positive zeta potential with a mean diameter ranging from 1.45-3.61µ. SEM images revealed the formation of spherical particles with indentations on the surface. XRD and DSC studies confirmed the presence of an amorphous form of the drug inside the microspheres. The in vitro release profile of TFP from cross-linked chitosan microspheres was influenced considerably by changing the concentration of polymer and crosslinking agent in the formulation. The drug release from (0.5%) chitosan microspheres reduced from 91% to 79%, when TPP concentration was increased from 10% w/w to 30% w/w. All the formulations clearly showed a burst release of the drug in the initial hours and a subsequent sustained release profile. Conclusion: The results of this study suggest that TPP crosslinked spray-dried chitosan microparticles could be a promising method for developing a long-acting drug delivery system intended to effectively treat schizophrenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call