Abstract

The therapeutic options for severe asthma are limited, and the biological therapies are all parenterally administered. The purpose of this study was to formulate a monoclonal antibody that targets the receptor for IL-4, an interleukin implicated in the pathogenesis of severe asthma, into a dry powder intended for delivery via inhalation. Dehydration was achieved using either spray drying or spray freeze drying, which exposes the thermolabile biomacromolecules to stresses such as shear and adverse temperatures. 2-hydroxypropyl-beta-cyclodextrin was incorporated into the formulation as protein stabiliser and aerosol performance enhancer. The powder formulations were characterised in terms of physical and aerodynamic properties, while the antibody was assessed with regard to its structural stability, antigen-binding ability, and in vitro biological activity after drying. The spray-freeze-dried formulations exhibited satisfactory aerosol performance, with emitted fraction exceeding 80% and fine particle fraction of around 50%. The aerosolisation of the spray-dried powders was hindered possibly by high residual moisture. Nevertheless, the antigen-binding ability and inhibitory potency were unaffected for the antibody in the selected spray-dried and spray-freeze-dried formulations, and the antibody was physically stable even after one-year storage at ambient conditions. The findings of this study establish the feasibility of developing an inhaled dry powder formulation of an anti-IL-4R antibody using spray drying and spray freeze drying techniques with potential for the treatment of severe asthma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.