Abstract

An apparatus capable of producing and depositing uniform droplets (100 to 200 μm in diameter) was developed and used to study the relationship between spray deposition parameters and the microstructures of Sn-40 wt pct Pb alloy spray deposits. The sprays used in the study consisted of uniform droplets, either 103 or 178 μm in diameter, that were in identical thermal and solidification states as they impacted the substrate. The thermal and solidification states of the uniform droplets were determined as a function of the flight distance (the distance from the metal pouring orifice) by model calculations and calorimetric measurements assuming equilibrium solidification. Although a fair agreement was noted between the model and the calorimetric measurements at small flight distances, corresponding to large liquid fractions, the calorimetric measurements indicated 10 to 20 pct higher liquid fractions at larger flight distances. The resultant microstructures comprised either a mixture of the Pb-rich and Sn-rich phases, both in an equiaxed morphology, or a lamellar eutectic structure with a small amount of the Pb-rich primary phase in a coarse spherical morphology. The mostly lamellar eutectic structure resulted from an excessive enthalpy flux and/or slow heat extraction from the deposit. Fine, equiaxed, two-phase microstructures and high deposit density resulted from optimal combinations of droplet enthalpy, deposition rate, droplet size, and deposit cooling rate which gave short local solidification times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.