Abstract

Kesterite Cu2ZnSnS4 (CZTS)-based solar devices have become a popular alternative to copper indium gallium selenide (CIGS) due to its outstanding properties such as high efficiency, non-toxicity, cost-effectiveness, suitable optoelectrical properties, and earth-abundancy. In this study, we directly fabricated CZTS films via a single-step spray pyrolysis technique, in contrast to conventional techniques where post sulfurization is required. The spray deposited CZTS films are investigated for their optical, structural, and electrical properties. The X-ray diffraction (XRD) and Raman analysis study revealed the synthesis of the phase-pure kesterite CZTS films without impurity phases. Large crystallites of CZTS are obtained at a deposition temperature of 400 °C, exhibiting a porous granular morphology with different grain sizes upon temperature variation. The size-dependent optical properties revealed that the CZTS films exhibited admirable visible light absorption of 105 cm−1 and an electronic bandgap ranging between 1.42 and 1.58 eV. The minimum dielectric loss obtained for optimized CZTS due to fewer intrinsic defects confirmed the materials’ applicability. Thus, the study provides a simple, viable route to fabricate CZTS without post-treatment to build affordable solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.