Abstract

Experiments were performed to investigate spray cooling enhancement on micro-structured surfaces. Surface modification techniques were utilized to obtain micro-scale indentations and protrusions on the heater surfaces. A smooth surface was also tested to have baseline data for comparison. Tests were conducted in a closed loop system with ammonia using RTFs vapor atomized spray nozzles. Thick film resistors, simulating heat source, were mounted onto 1 cm times 2 cm heaters and heat fluxes up to 500 W/cm2 (well below critical heat flux (CHF) limit) were removed. Two nozzles each spraying 1 cm2 of heater area used 96 ml/cm2-min (9.7 gal/in2-hr) liquid and 13.8 ml/cm2-s (11.3 ft3/in2-hr) vapor flow rate with only 48 kPa (7 psi) pressure drop. Results for micro-structured surfaces with protrusions and indentations offered significant performance enhancement of 115% and 52% increase in heat transfer coefficient over smooth surface respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.