Abstract

We consider a generalization of the classical game of Nim called hypergraph Nim. Given a hypergraph H on the ground set V={1,…,n} of n piles of stones, two players alternate in choosing a hyperedge H∈H and strictly decreasing all piles i∈H. The player who makes the last move is the winner. In this paper we give an explicit formula that describes the Sprague-Grundy function of hypergraph Nim for several classes of hypergraphs. In particular we characterize all 2-uniform hypergraphs (that is graphs) and all matroids for which the formula works. We show that all self-dual matroids are included in this class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.