Abstract

Abstract Astringency is an organoleptic property resulting mostly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers but being typically measured by sensorial panels it turns out subjective and expensive. The main goal of the present work is to develop a sensory system to estimate astringency relying on protein/polyphenol interactions. For this purpose, a model protein was immobilized on a sensory gold surface and its subsequent interaction with polyphenols was measured by Surface Plasma Resonance (SPR). α-amylase and pentagalloyl glucose (PGG) were selected as model protein and polyphenol, respectively. To ensure specific binding between these, various surface chemistries were tested. Carboxylic terminated thiol decreased the binding ability of PGG and allowed covalent attachment of α-amylase to the surface. The pH 5 was the optimal condition for α-amylase immobilization on the surface. Further studies focus on Localized SPR sensor and application to wine samples, providing objectivity when compared to a trained panel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.