Abstract

Macrophages are heterogeneous cells that play multifaceted roles in cancer progression and metastasis. However, the phenotypic diversity of tumor-associated macrophages (TAMs) in head and neck squamous carcinomas (HNSCC) remains poorly characterized. Here, we comprehensively analyzed the HNSCC single-cell transcriptomic dataset (GSE172577) and identified 5 subsets of myeloid-driven cells as TAMs using Seurat. Deciphering the lineage trajectory of TAMs, we revealed that FCN1+ TAMs could give rise to pro-angiogenesis SPP1+CCL18+ and SPP1+FOLR2+ populations through SPP1-CCL18+ and CXCL9+CXCL10+ TAMs. SPP1+CCL18+ and SPP1+FOLR2+ TAMs harbored pro-angiogenic and metastatic transcriptional programs and were correlated with poor survival of HNSCC patients. Our immunostaining examination revealed that infiltration of SPP1+ TAMs is associated with lymph node metastasis and poor prognosis in patients with HNSCC. Cell-cell communication analysis implied that SPP1+ TAM populations may employ SPP1 signaling to activate metastasis-related ECs. In vitro and in vivo studies, we demonstrated that SPP1hi TAMs enhanced tumor intravasation and metastasis in HNSCC in a manner dependent on the secretion of SPP1, CCL18, and CXCL8. Taken together, our study characterized the cellular heterogeneity of TAM populations and identified two SPP1+ TAM populations that play key roles in HNSCC intravasation and metastasis and serve as predictive markers for patients with HNSCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.