Abstract

Analysis of isomeric mixtures is a significant analytical challenge. In the forensic field, for example, over 1000 new psychoactive substances (NPSs), comprising of many closely related and often isomeric varieties, entered the drugs-of-abuse market within the last decade. Unambiguous identification of the isomeric form requires advanced spectroscopic techniques, such as GC-Vacuum Ultraviolet Spectroscopy (GC-VUV). The continuous development of NPSs makes the appearance of a novel compound in case samples a realistic scenario. While several analytical solutions have been presented recently to confidently distinguish NPS isomers, the presence of multiple isomers in a single drug sample is typically not considered. Due to their structural similarities it is possible that a novel NPS coelutes with a known isomer and thus remains undetected. This study investigates the capabilities of VUV spectral deconvolution for peak detection and identification in incompletely resolved drug mixtures. To mimic worst case scenarios, severe coelution was deliberately induced at elevated GC temperatures. The deconvolution software was nevertheless able to correctly detect both substances, even in case of near-identical VUV spectra at almost full coelution. As a next step, spectra were subsequently removed from the reference library to simulate the scenario in which a novel substance was encountered for the first time in forensic case work. However, also in this situation the deconvolution software still detected the coelution. This work shows that a VUV library match score below 0.998 may serve as a warning that a novel substance may be present in a street sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.