Abstract

In recent years, directional drilling becomes more popular in petroleum industry due to its more exposure to reservoir. During wellbore trajectory design for directional drilling, more importance should be given on safety issues. Well-profile energy is the key parameter which can assure a safe and efficient wellbore trajectory through proper optimization. In this work, the Spotted Hyena Optimizer (SHO) is proposed and implemented for optimizing the well-profile energy and compared with another state of art method named Particle Swarm Optimization (PSO) algorithm. The trajectory is mathematically formulated by using radius curvature method (RCM) considering 17 variables on which well-profile energy is depended. The SHO successfully obtained the optimum values of the 17 design variables which eventually given the minimum well-profile energy. The optimum well-profile energy obtained by SHO is 207.00 which is 18.28% better than PSO. Additionally, the sensitivity of the algorithm has been analysed by changing different operational parameter of SHO. It is observed that the efficiency of SHO increased with the increment in the number of search agents (hyenas). The minimum well-profile energy achieved through SHO ensure a less complex and safe wellbore trajectory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.