Abstract

We present a novel approach to examining the detrital zircon record, using similarity analysis of regionally defined populations to track crust production, preservation, and the efficacy of crustal recycling and homogenization. We compared temporally binned detrital zircon age data from geographically defined regions using Kolmogorov-Smirnov similarity measures, multidimensional scaling, and cluster analysis. This approach tracks disparity in the global detrital zircon record from 4 Ga to the present. Disparity values increase dramatically in the Neoarchean and are interpreted to reflect the emergence and preservation of isolated crustal fragments. Disparity values decrease through the early Paleoproterozoic, associated with the onset of plate tectonics and craton assembly. Oscillating disparity values through the remaining Proterozoic and Phanerozoic correlate (p = <0.01) with the supercontinent cycle, where regional detrital zircon populations are more similar during assembly and more distinct during dispersal. This link between the detrital zircon record and the supercontinent cycle necessitates well-coupled crustal recycling mechanisms that operate via both magmatic and sedimentary processes.

Highlights

  • Despite application of an increasing array of geochemical tools, ­facets of the evolution of Earth’s continental crust remain enigmatic, most significantly because of denudation and subduction recycling of older crust (Condie, 2018; Hawkesworth et al, 2018)

  • Global detrital zircon disparity values are low through the E­ oarchean to Mesoarchean, rise through the Neoarchean, and fall again through the first half of the Paleo­protero­zoic

  • Global ­detrital zircon disparity measures oscillate through the rest of the Proterozoic and Phanerozoic, with peaks in disparity centered at ca. 1.5 Ga, ca. 0.9 Ga, ca. 0.5 Ga, and 0.1 Ga (Fig. 2)

Read more

Summary

Introduction

Despite application of an increasing array of geochemical tools, ­facets of the evolution of Earth’s continental crust remain enigmatic, most significantly because of denudation and subduction recycling of older crust (Condie, 2018; Hawkesworth et al, 2018). The stability of the ZrSiO4 lattice and slow element diffusion enable primary age and geochemical data to be preserved in zircon grains over geological time scales, through weathering, erosion, diagenesis, and metamorphism, permitting the tracking of crustal evolution from at least 4.4 Ga (Hawkesworth and Kemp, 2006; Spencer et al, 2014). We demonstrate the potential of a new detrital zircon–based technique—temporally binned Kolmogorov-Smirnov distance-based multidimensional scaling (Vermeesch, 2013)—to assess geological relationships between discrete crustal regions across Earth history. We propose that this approach to global data provides novel insight into supercontinent development and fundamental tectonic processes that couple deep (magmatic-generational) and surface (sedimentary-preservational) systems

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.